Blog post / Julien Lapointe / Breathing block and improvement of repeated interval sprints





  1. Lapointe, J., Paradis-Deschênes, P., Woorons, X., Lemaître, F., & Billaut, F. (2020). Impact of Hypoventilation Training on Muscle Oxygenation, Myoelectrical Changes, Systemic [K+], and Repeated-Sprint Ability in Basketball Players. Frontiers in Sports and Active Living, 2.
  2. Woorons, X., Billaut, F., & Vandewalle, H. (2020). Transferable Benefits of Cycle Hypoventilation Training for Run-Based Performance in Team-Sport Athletes. International Journal of Sports Physiology and Performance, 1‑6.
  3. Woorons, X., Bourdillon, N., Vandewalle, H., Lamberto, C., Mollard, P., Richalet, J.-P., & Pichon, A. (2010). Exercise with hypoventilation induces lower muscle oxygenation and higher blood lactate concentration : Role of hypoxia and hypercapnia. European Journal of Applied Physiology, 110(2), 367‑377.
  4. Woorons, X., Millet, G. P., & Mucci, P. (2019). Physiological adaptations to repeated sprint training in hypoxia induced by voluntary hypoventilation at low lung volume. European Journal of Applied Physiology, 119(9), 1959‑1970.
  5. Woorons, X., Mollard, P., Pichon, A., Duvallet, A., Richalet, J.-P., & Lamberto, C. (2007). Prolonged expiration down to residual volume leads to severe arterial hypoxemia in athletes during submaximal exercise. Respiratory Physiology & Neurobiology, 158(1), 75‑82.

Welcome to Bia

To get started, please sign in.

Continue with:
━ or ━

Free webinar on June 13, 2024

Sensory-Motor Dysregulation: An Exciting Target for Persistent Pain